Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166389, 2022 06 01.
Article En | MEDLINE | ID: mdl-35301088

Classic galactosemia is an inborn error of metabolism caused by deleterious mutations on the GALT gene, which encodes the Leloir pathway enzyme galactose-1-phosphate uridyltransferase. Previous studies have shown that the endoplasmic reticulum unfolded protein response (UPR) is relevant to galactosemia, but the molecular mechanism behind the endoplasmic reticulum stress that triggers this response remains elusive. In the present work, we show that the activation of the UPR in yeast models of galactosemia does not depend on the binding of unfolded proteins to the ER stress sensor protein Ire1p since the protein domain responsible for unfolded protein binding to Ire1p is not necessary for UPR activation. Interestingly, myriocin - an inhibitor of the de novo sphingolipid synthesis pathway - inhibits UPR activation and causes galactose hypersensitivity in these models, indicating that myriocin-mediated sphingolipid depletion impairs yeast adaptation to galactose toxicity. Supporting the interpretation that the effects observed after myriocin treatment were due to a reduction in sphingolipid levels, the addition of phytosphingosine to the culture medium reverses all myriocin effects tested. Surprisingly, constitutively active UPR signaling did not prevent myriocin-induced galactose hypersensitivity suggesting multiple roles for sphingolipids in the adaptation of yeast cells to galactose toxicity. Therefore, we conclude that sphingolipid homeostasis has an important role in UPR activation and cellular adaptation in yeast models of galactosemia, highlighting the possible role of lipid metabolism in the pathophysiology of this disease.


Galactosemias , Galactose/metabolism , Galactose/pharmacology , Galactosemias/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sphingolipids/metabolism , UTP-Hexose-1-Phosphate Uridylyltransferase/metabolism
2.
Article En | MEDLINE | ID: mdl-34062255

SBF (Swi4/Swi6 Binding Factor) complex is a crucial regulator of G1/S transition in Saccharomyces cerevisiae. Here, we show that SBF complex is required for myriocin resistance, an inhibitor of sphingolipid synthesis. This phenotype was not shared with MBF complex mutants nor with deletion of the Swi4p downstream targets, CLN1/CLN2. Based on data mining results, we selected putative Swi4p targets related to sphingolipid metabolism and studied their gene transcription as well as metabolite levels during progression of the cell cycle. Genes which encode key enzymes for the synthesis of long chain bases (LCBs) and ceramides were periodically transcribed during the mitotic cell cycle, having a peak at G1/S, and required SWI4 for full transcription at this stage. In addition, HPLC-MS/MS data indicated that swi4Δ cells have decreased levels of sphingolipids during progression of the cell cycle, particularly, dihydrosphingosine (DHS), C24-phytoceramides and C24-inositolphosphoryl ceramide (IPC) while it had increased levels of mannosylinositol phosphorylceramide (MIPC). Furthermore, we demonstrated that both inhibition of de novo sphingolipid synthesis by myriocin or SWI4 deletion caused partial arrest at the G2/M phase. Importantly, our lipidomic data demonstrated that the sphingolipid profile of WT cells treated with myriocin resembled that of swi4Δ cells, with lower levels of DHS, IPC and higher levels of MIPC. Taken together, these results show that SBF complex plays an essential role in the regulation of sphingolipid homeostasis, which reflects in the correct progression through the G2/M phase of the cell cycle.


DNA-Binding Proteins/metabolism , G1 Phase/genetics , S Phase/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Sphingolipids/biosynthesis , Transcription Factors/metabolism , Gene Expression Regulation, Fungal , Mitosis/genetics , Saccharomyces cerevisiae/genetics
3.
J Biol Chem ; 296: 100586, 2021.
Article En | MEDLINE | ID: mdl-33774050

Previous work has suggested that highly positively charged protein segments coded by rare codons or poly (A) stretches induce ribosome stalling and translational arrest through electrostatic interactions with the negatively charged ribosome exit tunnel, leading to inefficient elongation. This arrest leads to the activation of the Ribosome Quality Control (RQC) pathway and results in low expression of these reporter proteins. However, the only endogenous yeast proteins known to activate the RQC are Rqc1, a protein essential for RQC function, and Sdd1, a protein with unknown function, both of which contain polybasic sequences. To explore the generality of this phenomenon, we investigated whether the RQC complex controls the expression of other proteins with polybasic sequences. We showed by ribosome profiling data analysis and western blot that proteins containing polybasic sequences similar to, or even more positively charged than those of Rqc1 and Sdd1, were not targeted by the RQC complex. We also observed that the previously reported Ltn1-dependent regulation of Rqc1 is posttranslational, independent of the RQC activity. Taken together, our results suggest that RQC should not be regarded as a general regulatory pathway for the expression of highly positively charged proteins in yeast.


Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Gene Expression , Protein Binding , Saccharomyces cerevisiae/genetics
4.
J Biol Chem ; 295(12): 3773-3782, 2020 03 20.
Article En | MEDLINE | ID: mdl-31996377

In the presence of galactose, lithium ions activate the unfolded protein response (UPR) by inhibiting phosphoglucomutase activity and causing the accumulation of galactose-related metabolites, including galactose-1-phosphate. These metabolites also accumulate in humans who have the disease classic galactosemia. Here, we demonstrate that Saccharomyces cerevisiae yeast strains harboring a deletion of UBX4, a gene encoding a partner of Cdc48p in the endoplasmic reticulum-associated degradation (ERAD) pathway, exhibit delayed UPR activation after lithium and galactose exposure because the deletion decreases galactose-1-phosphate levels. The delay in UPR activation did not occur in yeast strains in which key ERAD or proteasomal pathway genes had been disrupted, indicating that the ubx4Δ phenotype is ERAD-independent. We also observed that the ubx4Δ strain displays decreased oxygen consumption. The inhibition of mitochondrial respiration was sufficient to diminish galactose-1-phosphate levels and, consequently, affects UPR activation. Finally, we show that the deletion of the AMP-activated protein kinase ortholog-encoding gene SNF1 can restore the oxygen consumption rate in ubx4Δ strain, thereby reestablishing galactose metabolism, UPR activation, and cellular adaption to lithium-galactose challenge. Our results indicate a role for Ubx4p in yeast mitochondrial function and highlight that mitochondrial and endoplasmic reticulum functions are intertwined through galactose metabolism. These findings also shed new light on the mechanisms of lithium action and on the pathophysiology of galactosemia.


Galactose/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Lithium/pharmacology , Mitochondria/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Unfolded Protein Response/drug effects , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Endoplasmic Reticulum/metabolism , Galactose/metabolism , Galactosephosphates/metabolism , Intracellular Signaling Peptides and Proteins/deficiency , Intracellular Signaling Peptides and Proteins/genetics , Oxygen Consumption , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , RNA Splicing , Repressor Proteins/genetics , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics
5.
Chem Biol Interact ; 315: 108867, 2020 Jan 05.
Article En | MEDLINE | ID: mdl-31672467

Methylmercury (MeHg) and Ethylmercury (EtHg) are toxic to the central nervous system. Human exposure to MeHg and EtHg results mainly from the consumption of contaminated fish and thimerosal-containing vaccines, respectively. The mechanisms underlying the toxicity of MeHg and EtHg are still elusive. Here, we compared the toxic effects of MeHg and EtHg in Saccharomyces cerevisiae (S. cerevisiae) emphasizing the involvement of oxidative stress and the identification of molecular targets from antioxidant pathways. Wild type and mutant strains with deleted genes for antioxidant defenses, namely: γ-glutamylcysteine synthetase, glutathione peroxidase, catalase, superoxide dismutase, mitochondrial peroxiredoxin, cytoplasmic thioredoxin, and redox transcription factor Yap1 were used to identify potential pathways and proteins from cell redox system targeted by MeHg and EtHg. MeHg and EtHg inhibited cell growth, decreased membrane integrity, and increased the granularity and production of reactive species (RS) in wild type yeast. The mutants were predominantly less tolerant of mercurial than wild type yeast. But, as the wild strain, mutants exhibited higher tolerance to MeHg than EtHg. Our results indicate the involvement of oxidative stress in the cytotoxicity of MeHg and EtHg and reinforce S. cerevisiae as a suitable model to explore the mechanisms of action of electrophilic toxicants.


Antioxidants/pharmacology , Ethylmercury Compounds/pharmacology , Methylmercury Compounds/pharmacology , Oxidative Stress/drug effects , Saccharomyces cerevisiae/drug effects , Oxidation-Reduction/drug effects , Saccharomyces cerevisiae/metabolism
6.
FEMS Yeast Res ; 19(3)2019 05 01.
Article En | MEDLINE | ID: mdl-30985885

In this study, we found that cell cycle arrest induced by alpha-factor mating pheromone (G1), hydroxyurea (S) or nocodazole (G2/M) was associated to increased lipid droplet (LD) content. To identify novel cell cycle genes involved in LD homeostasis, we screened a deletion library for strains with altered LD levels. Among the mutants related to mitotic cell cycle, we found 24 hits that displayed a significantly higher LD content. Ontology mapping showed that neither a biological process nor a specific cell cycle phase was enriched among the hits. We decided to further study the role of SWI4 on LD homeostasis as it is involved in G1/S transition, a stage where lipolysis is active. The high LD content of swi4Δ mutant was not due to inhibition of lipolysis, but due to an increase in triacylglycerol (TAG) synthesis. In addition, deletion of the AMP kinase gene SNF1 or inhibition of TORC1 activity, both known regulators of LD homeostasis, further increased the LD content of a swi4Δ mutant. These findings highlight a role of the cell cycle regulator SWI4 in the coordination of lipid metabolism which is independent of the TORC1 and SNF1/AMPK pathways.


Cell Cycle Checkpoints , Gene Expression Regulation, Fungal , Lipid Droplets/metabolism , Saccharomyces cerevisiae/metabolism , Triglycerides/biosynthesis , DNA-Binding Proteins/genetics , Gene Deletion , Homeostasis , Mutation , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1403-1409, 2017 06.
Article En | MEDLINE | ID: mdl-28213126

Classic galactosemia is an inborn error of metabolism caused by deleterious mutations in the GALT gene. A number of evidences indicate that the galactose-1-phosphate accumulation observed in patient cells is a cause of toxicity in this disease. Nevertheless, the consequent molecular events caused by the galactose-1-phosphate accumulation remain elusive. Here we show that intracellular inorganic phosphate levels decreased when yeast models of classic galactosemia were exposed to galactose. The decrease in phosphate levels is probably due to the trapping of phosphate in the accumulated galactose-1-phosphate since the deletion of the galactokinase encoding gene GAL1 suppressed this phenotype. Galactose-induced phosphate depletion caused an increase in glycogen content, an expected result since glycogen breakdown by the enzyme glycogen phosphorylase is dependent on inorganic phosphate. Accordingly, an increase in intracellular phosphate levels suppressed the galactose effect on glycogen content and conferred galactose tolerance to yeast models of galactosemia. These results support the hypothesis that the galactose-induced decrease in phosphate levels leads to toxicity in galactosemia and opens new possibilities for the development of better treatments for this disease.


Galactose , Galactosemias/metabolism , Models, Biological , Phosphates/metabolism , Saccharomyces cerevisiae/metabolism , Galactokinase/genetics , Galactokinase/metabolism , Galactose/metabolism , Galactose/pharmacology , Galactosemias/genetics , Glycogen/genetics , Glycogen/metabolism , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
PLoS One ; 12(1): e0169682, 2017.
Article En | MEDLINE | ID: mdl-28076367

Acetyl-CoA carboxylase (Acc1p) is a key enzyme in fatty acid biosynthesis and is essential for cell viability. To discover new regulators of its activity, we screened a Saccharomyces cerevisiae deletion library for increased sensitivity to soraphen A, a potent Acc1p inhibitor. The hits identified in the screen (118 hits) were filtered using a chemical-phenotype map to exclude those associated with pleiotropic drug resistance. This enabled the identification of 82 ORFs that are genetic interactors of Acc1p. The main functional clusters represented by these hits were "transcriptional regulation", "protein post-translational modifications" and "lipid metabolism". Further investigation of the "transcriptional regulation" cluster revealed that soraphen A sensitivity is poorly correlated with ACC1 transcript levels. We also studied the three top unknown ORFs that affected soraphen A sensitivity: SOR1 (YDL129W), SOR2 (YIL092W) and SOR3 (YJR039W). Since the C18/C16 ratio of lipid acyl lengths reflects Acc1p activity levels, we evaluated this ratio in the three mutants. Deletion of SOR2 and SOR3 led to reduced acyl lengths, suggesting that Acc1p is indeed down-regulated in these strains. Also, these mutants showed no differences in Snf1p/AMPK activation status and deletion of SNF1 in these backgrounds did not revert soraphen A sensitivity completely. Furthermore, plasmid maintenance was reduced in sor2Δ strain and this trait was shared with 18 other soraphen A sensitive hits. In summary, our screen uncovered novel Acc1p Snf1p/AMPK-independent regulators.


Acetyl-CoA Carboxylase/genetics , Drug Resistance, Fungal/genetics , Gene Expression Regulation, Fungal , Protein Serine-Threonine Kinases/genetics , Acetyl-CoA Carboxylase/metabolism , Down-Regulation , Lipid Metabolism , Macrolides/pharmacology , Open Reading Frames , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
9.
Insect Biochem Mol Biol ; 72: 41-52, 2016 May.
Article En | MEDLINE | ID: mdl-27001070

The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar to those described for other insect species. The qPCR analysis revealed that these genes have characteristic expression profiles in insect organs, suggesting that they have specific roles in insect physiology. Recombinant RpACBP-1 was able to bind acyl-CoA in an in vitro gel-shift assay. Moreover, heterologous RpACBP-1 expression in acb1Δ mutant yeast rescued the multi-lobed vacuole phenotype, indicating that RpACBP-1 acts as a bona fide acyl-CoA-binding protein. RpACBP-1 knockdown using RNAi caused triacylglycerol accumulation in the insect posterior midgut and a reduction in the number of deposited eggs. The amount of stored triacylglycerol was reduced in flight muscle, and the incorporation of fatty acids in cholesteryl esters was increased in the fat body. These results showed that RpACBP-1 participates in several lipid metabolism steps in R. prolixus.


Diazepam Binding Inhibitor/metabolism , Insect Proteins/metabolism , Rhodnius/metabolism , Acyl Coenzyme A/metabolism , Animals , Fat Body/metabolism , Female , Fertility , Gene Expression Regulation , Insect Proteins/genetics , Lipid Metabolism , Male , Oviposition , RNA Interference , Rhodnius/genetics
10.
Mol Cell Biol ; 35(4): 737-46, 2015 Feb.
Article En | MEDLINE | ID: mdl-25512609

Lipid droplets (LDs) are intracellular structures that regulate neutral lipid homeostasis. In mammals, LD synthesis is inhibited by rapamycin, a known inhibitor of the mTORC1 pathway. In Saccharomyces cerevisiae, LD dynamics are modulated by the growth phase; however, the regulatory pathways involved are unknown. Therefore, we decided to study the role of the TORC1 pathway on LD metabolism in S. cerevisiae. Interestingly, rapamycin treatment resulted in a fast LD replenishment and growth inhibition. The discovery that osmotic stress (1 M sorbitol) also induced LD synthesis but not growth inhibition suggested that the induction of LDs in yeast is not a secondary response to reduced growth. The induction of LDs by rapamycin was due to increased triacylglycerol but not sterol ester synthesis. Induction was dependent on the TOR downstream effectors, the PP2A-related phosphatase Sit4p and the regulatory protein Tap42p. The TORC1-controlled transcriptional activators Gln3p, Gat1p, Rtg1p, and Rtg3p, but not Msn2p and Msn4p, were required for full induction of LDs by rapamycin. Furthermore, we show that the deletion of Gln3p and Gat1p transcription factors, which are activated in response to nitrogen availability, led to abnormal LD dynamics. These results reveal that the TORC1 pathway is involved in neutral lipid homeostasis in yeast.


Gene Expression Regulation, Fungal , Lipid Droplets/metabolism , Phosphatidylinositol 3-Kinases/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cholesterol Esters/metabolism , GATA Transcription Factors/deficiency , GATA Transcription Factors/genetics , Lipid Droplets/chemistry , Lipid Droplets/drug effects , Lipid Metabolism/drug effects , Osmotic Pressure , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction , Sirolimus/pharmacology , Sorbitol/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/deficiency , Transcription Factors/metabolism , Triglycerides/biosynthesis
11.
Dis Model Mech ; 7(1): 55-61, 2014 Jan.
Article En | MEDLINE | ID: mdl-24077966

Classic galactosemia is a human autosomal recessive disorder caused by mutations in the GALT gene (GAL7 in yeast), which encodes the enzyme galactose-1-phosphate uridyltransferase. Here we show that the unfolded protein response pathway is triggered by galactose in two yeast models of galactosemia: lithium-treated cells and the gal7Δ mutant. The synthesis of galactose-1-phosphate is essential to trigger the unfolded protein response under these conditions because the deletion of the galactokinase-encoding gene GAL1 completely abolishes unfolded protein response activation and galactose toxicity. Impairment of the unfolded protein response in both yeast models makes cells even more sensitive to galactose, unmasking its cytotoxic effect. These results indicate that endoplasmic reticulum stress is induced under galactosemic conditions and underscores the importance of the unfolded protein response pathway to cellular adaptation in these models of classic galactosemia.


Galactosemias/enzymology , Galactosemias/genetics , Gene Expression Regulation, Fungal , Unfolded Protein Response , Alternative Splicing , Basic-Leucine Zipper Transcription Factors/metabolism , Endoplasmic Reticulum/metabolism , Fungal Proteins/metabolism , Galactokinase/metabolism , Galactose/metabolism , Galactosephosphates/chemistry , Glycoproteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Mutation/drug effects , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Protein Folding , RNA, Messenger/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism
12.
Appl Microbiol Biotechnol ; 97(5): 2093-107, 2013 Mar.
Article En | MEDLINE | ID: mdl-22915193

High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries.


Ethanol/metabolism , Gene Expression , Hydrostatic Pressure , Saccharomyces cerevisiae/physiology , Stress, Physiological , Brazil , Gene Expression Profiling , Metabolic Networks and Pathways/genetics , Microarray Analysis , Saccharomyces cerevisiae/metabolism , Time Factors
13.
FEMS Yeast Res ; 12(8): 907-17, 2012 Dec.
Article En | MEDLINE | ID: mdl-22882630

We studied the effect of the loss of the Ser-Thr protein phosphatase Sit4, an important post-translational regulator, on the steady-state levels of the low-affinity glucose transporter Hxt1p and observed a delay in its appearance after high glucose induction, slow growth, and diminished glucose consumption. By analyzing the known essential pathway necessary to induce Hxt1p, we observed a partial inhibition of casein kinase I activity. In both WT and sit4Δ strains, the transcript was induced with no significant difference at 15 min of glucose induction; however, after 45 min, a clear difference in the level of expression was observed being 45% higher in WT than in sit4Δ strain. As at early time of induction, the HXT1 transcript was present but not the protein in the sit4Δ strain we analyzed association of HXT1 with ribosomes, which revealed a significant difference in the association profile; in the mutant strain, the HXT1 transcript associated with a larger set of ribosomal fractions than it did in the WT strain, suggesting also a partial defect in protein synthesis. Overexpression of the translation initiation factor TIF2/eIF4A led to an increase in Hxt1p abundance in the WT strain only. It was concluded that Sit4p ensures that HXT1 transcript is efficiently transcribed and translated thus increasing protein levels of Hxt1p when high glucose levels are present.


Gene Expression Regulation, Fungal , Glucose Transport Proteins, Facilitative/metabolism , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Casein Kinase I/metabolism , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4F/metabolism , Fermentation , Glucose/metabolism , Glucose Transport Proteins, Facilitative/genetics , Immunoblotting , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Polyribosomes/metabolism , Protein Phosphatase 2/genetics , Real-Time Polymerase Chain Reaction/methods , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Threonine/genetics , Threonine/metabolism
14.
PLoS One ; 6(10): e25935, 2011.
Article En | MEDLINE | ID: mdl-22022475

Heme is a ubiquitous molecule that has a number of physiological roles. The toxic effects of this molecule have been demonstrated in various models, based on both its pro-oxidant nature and through a detergent mechanism. It is estimated that about 10 mM of heme is released during blood digestion in the blood-sucking bug's midgut. The parasite Trypanosoma cruzi, the agent of Chagas' disease, proliferates in the midgut of the insect vector; however, heme metabolism in trypanosomatids remains to be elucidated. Here we provide a mechanistic explanation for the proliferative effects of heme on trypanosomatids. Heme, but not other porphyrins, induced T. cruzi proliferation, and this phenomenon was accompanied by a marked increase in reactive oxygen species (ROS) formation in epimastigotes when monitored by ROS-sensitive fluorescent probes. Heme-induced ROS production was time- and concentration-dependent. In addition, lipid peroxidation and the formation of 4-hydroxy-2-nonenal (4-HNE) adducts with parasite proteins were increased in epimastigotes in the presence of heme. Conversely, the antioxidants urate and GSH reversed the heme-induced ROS. Urate also decreased parasite proliferation. Among several protein kinase inhibitors tested only specific inhibitors of CaMKII, KN93 and Myr-AIP, were able to abolish heme-induced ROS formation in epimastigotes leading to parasite growth impairment. Taken together, these data provide new insight into T. cruzi- insect vector interactions: heme, a molecule from the blood digestion, triggers epimastigote proliferation through a redox-sensitive signalling mechanism.


Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Heme/pharmacology , Life Cycle Stages/drug effects , Reactive Oxygen Species/pharmacology , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Animals , Antioxidants/pharmacology , Enzyme Activation/drug effects , Heme/chemistry , Kinetics , Lipid Peroxidation/drug effects , Oxidation-Reduction/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Trypanosoma cruzi/drug effects
15.
PLoS One ; 5(10): e13692, 2010 Oct 28.
Article En | MEDLINE | ID: mdl-21060891

In virtually every cell, neutral lipids are stored in cytoplasmic structures called lipid droplets (LDs) and also referred to as lipid bodies or lipid particles. We developed a rapid high-throughput assay based on the recovery of quenched BODIPY-fluorescence that allows to quantify lipid droplets. The method was validated by monitoring lipid droplet turnover during growth of a yeast culture and by screening a group of strains deleted in genes known to be involved in lipid metabolism. In both tests, the fluorimetric assay showed high sensitivity and good agreement with previously reported data using microscopy. We used this method for high-throughput identification of protein phosphatases involved in lipid droplet metabolism. From 65 yeast knockout strains encoding protein phosphatases and its regulatory subunits, 13 strains revealed to have abnormal levels of lipid droplets, 10 of them having high lipid droplet content. Strains deleted for type I protein phosphatases and related regulators (ppz2, gac1, bni4), type 2A phosphatase and its related regulator (pph21 and sap185), type 2C protein phosphatases (ptc1, ptc4, ptc7) and dual phosphatases (pps1, msg5) were catalogued as high-lipid droplet content strains. Only reg1, a targeting subunit of the type 1 phosphatase Glc7p, and members of the nutrient-sensitive TOR pathway (sit4 and the regulatory subunit sap190) were catalogued as low-lipid droplet content strains, which were studied further. We show that Snf1, the homologue of the mammalian AMP-activated kinase, is constitutively phosphorylated (hyperactive) in sit4 and sap190 strains leading to a reduction of acetyl-CoA carboxylase activity. In conclusion, our fast and highly sensitive method permitted us to catalogue protein phosphatases involved in the regulation of LD metabolism and present evidence indicating that the TOR pathway and the SNF1/AMPK pathway are connected through the Sit4p-Sap190p pair in the control of lipid droplet biogenesis.


Fluorescent Dyes/chemistry , Lipid Metabolism , Phosphoprotein Phosphatases/metabolism , Blotting, Western , Microscopy, Fluorescence
16.
FEMS Yeast Res ; 10(6): 674-86, 2010 Sep.
Article En | MEDLINE | ID: mdl-20608983

Multidrug resistance in Saccharomyces cerevisiae is frequently associated with gain-of-function mutations in zinc finger-containing transcription factors Pdr1p and Pdr3p. These regulatory proteins activate the expression of several ATP-binding cassette transporter genes, leading to elevated drug resistance. Here, we report that loss of the type 2A-related serine/threonine protein phosphatase Sit4p renders yeast cells sensitive to cycloheximide, azoles, daunorubicin and rhodamine 6G. This effect is a consequence of the decreased transcriptional levels of mainly PDR3 and its target genes, PDR5, SNQ2 and YOR1, which encode multidrug efflux pumps. The multidrug sensitivity of sit4 mutant cells is suppressed by the PDR1-3 mutant allele, which encodes a hyperactive form of Pdr1p. Sit4p is known to associate with regulatory proteins Sap155p, Sap4p, Sap185p and Sap190p. We found that the sap155 mutant strain is sensitive to azoles, but not to cycloheximide, while the sap155sap4 and sap185sap190 mutant strains are sensitive to both drugs. This finding indicates that the Sit4p-Sap protein complex subtly modulates the expression of drug efflux pumps. Drug resistance conferred by the expression of the Candida albicans CDR1 gene, an ortholog of PDR5 in S. cerevisiae, is also positively modulated by Sit4p. These data uncover a new regulatory pathway that connects multidrug resistance to Sit4p function.


Antifungal Agents/pharmacology , Drug Resistance, Multiple, Fungal , Gene Expression Regulation, Fungal , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Azoles/pharmacology , Cycloheximide/pharmacology , DNA-Binding Proteins/biosynthesis , Daunorubicin/pharmacology , Gene Deletion , Humans , Phosphoprotein Phosphatases/metabolism , Protein Phosphatase 2/genetics , Rhodamines/pharmacology , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Suppression, Genetic , Transcription Factors/biosynthesis
17.
Biochemistry ; 48(29): 6811-23, 2009 Jul 28.
Article En | MEDLINE | ID: mdl-19530740

The Sup35 protein of Saccharomyces cerevisiae forms a prion that generates the [PSI(+)] phenotype. Its NM region governs prion status, forming self-seeding amyloid fibers in vivo and in vitro. A tryptophan mutant of Sup35 (NM(F117W)) was used to probe its aggregation. Four indicators of aggregation, Trp 117 maximum emission, Trp polarization, thio-T binding, and light scattering increase, revealed faster aggregation at 4 degrees C than at 25 degrees C, and all indicators changed in a concerted fashion at the former temperature. Curiously, at 25 degrees C the changes were not synchronized; the first two indicators, which reflect nucleation, changed more quickly than the last two, which reflect fibril formation. These results suggest that nucleation is insensitive to temperature, whereas fibril extension is temperature dependent. As expected, aggregation is accelerated when a small fraction (5%) of the nuclei produced at 4 or 25 degrees C are added to a suspension containing the soluble NM domain, although these nuclei do not seem to propagate any structural information to the growing fibrils. Fibrils grown at 4 degrees C were less stable in GdmCl than those grown at higher temperature. However, they were both resistant to high pressure; in fact, both sets of fibrils responded to high pressure by adopting an altered conformation with a higher capacity for thio-T binding. From these data, we calculated the change in volume and free energy associated with this conformational change. AFM revealed that the fibrils grown at 4 degrees C were statistically smaller than those grown at 25 degrees C. In conclusion, the introduction of Trp 117 allowed us to more carefully dissect the effects of temperature on the aggregation of the Sup35 NM domain.


Peptide Termination Factors/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Base Sequence , Circular Dichroism , DNA Primers , Fluorescence Polarization , Microscopy, Atomic Force , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Polymerase Chain Reaction , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Thermodynamics
18.
Proc Natl Acad Sci U S A ; 106(7): 2097-103, 2009 Feb 17.
Article En | MEDLINE | ID: mdl-19196968

A mouse neurological mutant, lister, was identified through a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Homozygous lister mice exhibit profound early-onset and progressive neurological and motor dysfunction. lister encodes a RING finger protein, LISTERIN, which functions as an E3 ubiquitin ligase in vitro. Although lister is widely expressed in all tissues, motor and sensory neurons and neuronal processes in the brainstem and spinal cord are primarily affected in the mutant. Pathological signs include gliosis, dystrophic neurites, vacuolated mitochondria, and accumulation of soluble hyperphosphorylated tau. Analysis with a different lister allele generated through targeted gene trap insertion reveals LISTERIN is required for embryonic development and confirms that direct perturbation of a LISTERIN-regulated process causes neurodegeneration. The lister mouse uncovers a pathway involved in neurodegeneration and may serves as a model for understanding the molecular mechanisms underlying human neurodegenerative disorders.


Mutation , Neurodegenerative Diseases/genetics , Ubiquitin-Protein Ligases/metabolism , Alleles , Animals , Axons , Genotype , Homozygote , Humans , Mice , Mice, Inbred C57BL , Models, Biological , Mutagenesis , Phenotype , Tissue Distribution , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/physiology
19.
FEMS Yeast Res ; 8(8): 1245-53, 2008 Dec.
Article En | MEDLINE | ID: mdl-18811659

In Saccharomyces cerevisiae, lithium induces a 'galactosemia-like' phenotype as a consequence of inhibition of phosphoglucomutase, a key enzyme in galactose metabolism. Induced galactose toxicity is prevented by deletion of GAL4, which inhibits the transcriptional activation of genes involved in galactose metabolism and by deletion of the galactokinase (GAL1), indicating that galactose-1-phosphate, a phosphorylated intermediate of the Leloir pathway, is the toxic compound. As an alternative to inhibiting entry and metabolism of galactose, we investigated whether deviation of galactose metabolism from the Leloir pathway would also overcome the galactosemic effect of lithium. We show that cells overexpressing the aldose reductase GRE3, which converts galactose to galactitol, are more tolerant to lithium than wild-type cells when grown in galactose medium and they accumulate more galactitol and less galactose-1-phosphate. Overexpression of GRE3 also suppressed the galactose growth defect of the 'galactosemic'gal7- and gal10-deleted strains, which lack galactose-1-P-uridyltransferase or UDP-galactose-4-epimerase activities, respectively. Furthermore, the effect of GRE3 was independent of the inositol monophosphatases INM1 and INM2. We propose that lithium induces a galactosemic state in yeast and that inhibition of the Leloir pathway before the phosphorylation step or stimulation of galactitol production suppresses lithium-induced galactose toxicity.


Aldehyde Reductase/metabolism , Antimanic Agents/pharmacology , Galactose , Lithium/pharmacology , Saccharomyces cerevisiae/drug effects , Up-Regulation , Aldehyde Reductase/genetics , Galactokinase/genetics , Galactokinase/metabolism , Galactose/metabolism , Galactose/toxicity , Galactosephosphates/metabolism , Gene Deletion , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
FEMS Yeast Res ; 8(4): 615-21, 2008 Jun.
Article En | MEDLINE | ID: mdl-18373681

Hyphal development in Candida albicans contributes to virulence, and inhibition of filamentation is a target for the development of antifungal agents. Lithium is known to impair Saccharomyces cerevisiae growth in galactose-containing media by inhibition of phosphoglucomutase, which is essential for galactose metabolism. Lithium-mediated phosphoglucomutase inhibition is reverted by Mg(2+). In this study we have assessed the effect of lithium upon C. albicans and found that growth is inhibited preferentially in galactose-containing media. No accumulation of glucose-1-phosphate or galactose-1-phosphate was detected when yeasts were grown in the presence of galactose and 15 mM LiCl, though we observed that in vitro lithium-mediated phosphoglucomutase inhibition takes place with an IC(50) of 2 mM. Furthermore, growth inhibition by lithium was not reverted by Mg(2+). These results show that lithium-mediated inhibition of growth in a galactose-containing medium is not due to inhibition of galactose conversion to glucose-6-phosphate but is probably due to inhibition of a signaling pathway. Deletion of the Ser-Thr protein phosphatase SIT4 and treatment with rapamycin have been shown to inhibit filamentous differentiation. We observed that C. albicans filamentation was inhibited by lithium in solid medium containing either galactose as the sole carbon source or 10% fetal bovine serum. These results suggest that suppression of hyphal outgrowth by lithium could be related to inhibition of the target of rapamycin (TOR) pathway.


Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/growth & development , Lithium/pharmacology , Candida albicans/chemistry , Culture Media/chemistry , Galactose/metabolism , Galactosephosphates/analysis , Gene Deletion , Glucosephosphates/analysis , Hyphae/drug effects , Hyphae/growth & development , Inhibitory Concentration 50 , Magnesium/metabolism , Phosphoglucomutase/antagonists & inhibitors , Protein Phosphatase 2/genetics , Saccharomyces cerevisiae Proteins/genetics , Sirolimus/pharmacology
...